Environment Variables

Sakhi API service supports different environment variables to configure your instance. You can specify the following variables in the .env file inside the root folder. Refer to the .env.examplearrow-up-right file.

Variable
Description
Type
Default

SERVICE_ENVIRONMENT

Name of the application instance

String

dev

LOG_LEVEL

It's used to define the level of logs to be captured.

Enum String: error, info, debug

info

CONFIG_INI_PATH

Path of config.ini file

String

config.ini

REDIS_HOST

Redis host URL

String

localhost

REDIS_PORT

Redis port number

Number

6379

REDIS_DB

Redis index

Number

0

TELEMETRY_ENDPOINT_URL

Telemetry service host URL

String

-

TELEMETRY_LOG_ENABLED

Used to enable/disable telemetry logging.

Enum String: true, false

true

LLM

A chat model is a language model that uses chat messages as inputs and returns chat messages as outputs. Sakhi API service currently supports 3 LLM types:

These LLMs can be configured with the following env variables:

OpenAI

LLM_TYPE=openai
OPENAI_API_KEY=<openai_key>
GPT_MODEL=<model_name>

Azure OpenAI

Ollama

circle-info

If no env variables are specified, the service will throw the runtime exception.

For more information, Please refer to LLM page.

Storage

Storage is used for storing audio files when the user wants output as audio. Users should specify a configuration option, like BUCKET_TYPE, to choose between different cloud provider services such as AWS S3, OCI, or GCP.

Here's the list of storage available to use in the Sakhi API Service:

OCI (Oracle)

AWS (Amazon)

GCP (Google)

circle-info

If no env variables are specified, the service will throw the runtime exception.

Translation

Sakhi API service currently supports 3 translation services and can be configured with the following env variables:

Bhashini Dhruva

Ekstep Dhruva

Google

circle-info

If no env variables are specified, the service will throw the runtime exception.

Vector Store

A vector store or vector database refers to a type of database system that specializes in storing and retrieving high-dimensional numerical vectors. These stores are designed for efficient management and indexing of vectors, enabling fast similarity searches.

Here is the list of vector stores/databases available to use in the Sakhi API Service:

Marqo

circle-info

If no env variables are specified, the service will throw the runtime exception.

For more information, Please refer to Vector Store page.

Last updated