Environment Variables
Sakhi API service supports different environment variables to configure your instance. You can specify the following variables in the .env
file inside the root
folder. Refer to the .env.example file.
SERVICE_ENVIRONMENT
Name of the application instance
String
dev
LOG_LEVEL
It's used to define the level of logs to be captured.
Enum String: error
, info
, debug
info
CONFIG_INI_PATH
Path of config.ini file
String
config.ini
REDIS_HOST
Redis host URL
String
localhost
REDIS_PORT
Redis port number
Number
6379
REDIS_DB
Redis index
Number
0
TELEMETRY_ENDPOINT_URL
Telemetry service host URL
String
-
TELEMETRY_LOG_ENABLED
Used to enable/disable telemetry logging.
Enum String: true
, false
true
LLM
A chat model is a language model that uses chat messages as inputs and returns chat messages as outputs. Sakhi API service currently supports 3 LLM types:
These LLMs can be configured with the following env variables:
OpenAI
LLM_TYPE=openai
OPENAI_API_KEY=<openai_key>
GPT_MODEL=<model_name>
Azure OpenAI
LLM_TYPE=azure
AZURE_OPENAI_ENDPOINT=<azure_openai_endpoint_url>
AZURE_OPENAI_API_KEY=<azure_openai_key>
OPENAI_API_VERSION=<azure_openai_api_version>
AZURE_MODEL=<azure_deployment_model>
Ollama
LLM_TYPE=ollama
OLLAMA_API_ENDPOINT=<ollama_endpoint_url>
LLM_MODEL=<model_name>
For more information, Please refer to LLM page.
Storage
Storage is used for storing audio files when the user wants output as audio. Users should specify a configuration option, like BUCKET_TYPE, to choose between different cloud provider services such as AWS S3, OCI, or GCP.
Here's the list of storage available to use in the Sakhi API Service:
OCI (Oracle)
BUCKET_TYPE=oci
BUCKET_ENDPOINT_URL=<oci_bucket_endpoint_url>
BUCKET_REGION_NAME=<oci_bucket_region_name>
BUCKET_NAME=<oci_bucket_name>
BUCKET_SECRET_ACCESS_KEY=<oci_bucket_access_key_id>
BUCKET_ACCESS_KEY_ID=<oci_bucket_access_key_id>
AWS (Amazon)
BUCKET_TYPE=aws
BUCKET_REGION_NAME=<aws_bucket_region_name>
BUCKET_NAME=<aws_bucket_name>
BUCKET_SECRET_ACCESS_KEY=<aws_bucket_secret_access_key>
BUCKET_ACCESS_KEY_ID=<aws_bucket_access_key_id>
GCP (Google)
BUCKET_TYPE=gcp
BUCKET_NAME=<gcp_bucket_name>
GCP_CONFIG_PATH=<gcp_application_credential_path>
Translation
Sakhi API service currently supports 3 translation services and can be configured with the following env variables:
Bhashini Dhruva
TRANSLATION_TYPE=bhashini
BHASHINI_ENDPOINT_URL=<bhashini_api_endpoint_url>
BHASHINI_API_KEY=<bhashini_api_key>
Ekstep Dhruva
TRANSLATION_TYPE=dhruva
BHASHINI_ENDPOINT_URL=<bhashini_api_endpoint_url>
BHASHINI_API_KEY=<bhashini_api_key>
Google
TRANSLATION_TYPE=google
GCP_CONFIG_PATH=<gcp_application_credential_path>
Vector Store
A vector store or vector database refers to a type of database system that specializes in storing and retrieving high-dimensional numerical vectors. These stores are designed for efficient management and indexing of vectors, enabling fast similarity searches.
Here is the list of vector stores/databases available to use in the Sakhi API Service:
Marqo
VECTOR_STORE_TYPE=marqo
VECTOR_STORE_ENDPOINT=http://localhost:8882
EMBEDDING_MODEL=flax-sentence-embeddings/all_datasets_v4_mpnet-base
VECTOR_COLLECTION_NAME=<vector_collection_name>
For more information, Please refer to Vector Store page.
Last updated